Oak-Pine Ecosystem Restoration with Fire: *Case studies of seasonality in Michigan*

Jack McGowan-Stinski Program Manager

FIRE SCIENCE EXCHANGE NETWORK JOINT FIRE SCIENCE PROGRAM

Lake States Fire Science Consortium

A JFSP KNOWLEDGE EXCHANGE CONSORTIUM

A network of fire managers and scientists interested in the fire-dependent ecosystems of the northern Lake States region.

lakestatesfiresci.net/

(MY) SIDEBARS TO "OAK-BARRENS-OAK SAVANNA- OAK FOREST" MANAGEMENT AND RESTORATION....

- Oak Barrens
- Less nutrients available
- Sandier soils
- May take 2 seasons+ to "grow" fuel for next fire

Oak Savanna more nutrients available "better" soils Takes 1 season to "grow" fuel for next fire

LANDSCAPE GRADIENTS

SHIFTING MOSAIC

Occur in a shifting landscape mosaic with a pyric geography

oak forest

savanna or barrens

dry sand prairie

MANY OF OUR OAK-PINE "FORESTS" ARE ACTUALLY FORMER SAVANNAS

"MANAGEMENT RECOMMENDATIONS... GOOD VS. USELESS"

fire implementation vs. single species or "-ologist" view

Cannot burn

(Snow, or

dormant effects)

Mgmt.

recommendation:

OK to burn since

minimize effects on

herps, birds, insects

Ecological	burns,	feasible
time	s to bu	rn

Mgmt. recommendation = No Burn: might impact nesting/breeding birds, insects, herps that are active, game species, roost trees for bats Cannot burn (Snow, or dormant effects)

Mgmt. recommendation: OK to burn since minimize effects on herps, birds, insects

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Fire is...

An Ecological Process in a
Fire-dependent System
A Management Tool
A High Risk Activity

FOR EACH BURN....

Keep fire in the "box" and keep crew and public safe

"Good Fire" versus "Bad Fire"

"Well, thank God we all made it out in time....
'Course, now we're equally screwed."

WHAT IS YOUR MANAGEMENT/RESTORATION OBJECTIVES?

- To make unit black?
- Reduce shrubs?
- Thin canopy?
- Enhance grasses?
- Enhance forbs?

- Mechanical
- Chemical
- Biological
- Fire
- Enhance habitat for a certain animal species?
- keep oaks in an oak system....
- Achieve full range of variability in the firedependent community?

"Goal is not the flames, but what the flames do...

Copyright Jack McGowan-Stinski

...let the Fire Effects lead you

Fire Environment: backfire – headfire rate of spread – wind and slope affects

Residence time of heat

YOUR "PRESCRIPTION" FOR FIRE AND OAK RESTORATION...

Your "prescription" to use prescribed fire as one of the management techniques for oak restoration or regeneration is:

Burn at exactly ____°F, ____%RH, with FDFM at _____% and 10 HR and 100 HR fuel at _____%, on this day _____in the month of ______, starting ignition at and ending at _____, use this firing pattern _____, and keep the rate of spread at _____, and let the unit burn out for _____days.....

Duff Moisture Code and Drought Code....

MONITORING

Photo-monitoring Vegetation transects Rare butterfly surveys Modified Brown's transects Oak-Pine Barrens **Coarse-level Metrics**

COARSE-LEVEL METRICS

- canopy closure
- complexity of canopy structure and percent of canopy composed of oak or pine species
- sub-canopy oak and oak recruitment
- shrub cover
- ground cover of native herbaceous species (grass, sedge, forbs) compared to non-native invasive and competitive plant species.

SEASONALITY: "TRADITIONAL" BURN WINDOWS

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

SEASONALITY: BURN WINDOWS BY NATURAL COMMUNITY

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

SEASONALITY: GROWING SEASON = SUMMER BURNING

Apr

June

Sep

Aug

July

PHENOLOGY

5 1999 6 2007

1.12.

after 1st burn: Burn May 31, 2007 (photo Sept 2007)

after 2nd burn June 20, 2009 (photo Sept 2009)

"We tried a summer burn and it did not work, so we are not going to try again...."

Changes in dominance of different groups of grasses and forbs in response to fire seasonality

	April-May	June-Aug	Sept	Oct-Nov
Grasses and sedges				
Warm season	1	₽	\Leftrightarrow	ſ
Cool season	➡		ſ	
Forbs				
Early-flowering forbs	➡	ſ	ſ	
Mid-flowering forbs	➡		ſ	1 ?
Late-flowering forbs	ſ	₽		1 ?
Legumes (Fabaceae)	ſ		ſ	ᠿ

Fire Effects - Invasive's & Competitive Species - Seasonality

	March-April	May	June-Aug	Sept	Oct-Nov
knapweed	1	\iff	Ļ	Ţ	1
sweet clovers	1	1	\Leftrightarrow	\overleftrightarrow	1
garlic mustard		Ļ	ļ	1	1
St. Johnswort	1	\iff	ļ	\overleftrightarrow	1
bouncing bet	1	1			1
buckthorn	1	\iff	Ļ	Ţ	1
autumn olive		Ţ	Ţ	Ţ	\overleftrightarrow
honeysuckles	1	Ţ	ļ		1
pennsylvania sedge	1		Ţ		1

Note: it is better to use yearly Phenology, but illustrate in general terms with calendar dates

Smoke Management

Duff Moisture Code and Drought Code....

FIRE-DEPENDENT SYSTEMS

Lake States Fire Science Consortium

A JFSP KNOWLEDGE EXCHANGE CONSORTIUM

Questions?

