Using fire throughout the year

Jack McGowan-Stinski Program Manager http://lakestatesfiresci.net/index.html mcgowan-stinski.1@osu.edu

Using fire throughout the year - *thoughts on a paradigm shift...*

My paradigm shift... and beginning to "think like a fire-dependent ecosystem"

Jan Feb Mar Apr MayJune July Aug Sep Oct Nov Dec 952 RX burns with monitoring data 1994-2017

□ 952 RX burns with monitoring data 1994-2017

Prescribed Fire Effects Practitioner...

Effects

Goals Objectives Values Vision Prescriptions Weather Implementation

Prescribed Fire Effects Practitioner...

Effects

Goals Objectives Values Vision Prescriptions Weather Implementation

"Goal is not the flames, but what the flames do...

... achieving desired fire effects?

"Spring" & "Fall Burn Windows" = ~ 60 total days minus (burn ban/wildfire risk days plus rainy/windy days) = About 30 operational days (ignition/ patrol) July Aug TIME JC **NO Burn** Oct May Nov Nor winter burning YEN **Heb** TTE

Dormant Season Fire Effects – Native Plants

	April-May	June-Aug	Sept	Oct-Nov
Grasses and sedges				
Warm season	1			ſ
Cool season	➡			↓ ?
Forbs				
Early-flowering forbs	₽			↓ ?
Mid-flowering forbs	➡			1 ?
Late-flowering forbs				1 ?
Legumes (Fabaceae)	ſ			
Population Inc	rease 🏫 🔅	Decrease	~Same 🧲	\Rightarrow

Note: it is better to use yearly Phenology, but illustrated above in general terms with calendar dates in N. Midwest

Dormant Season Fire Effects – non-native or competitive

	March-April	May	June-Aug	Sept	Oct-Nov
knapweed	1				
sweet clovers	1				1
garlic mustard					1
St. Johnswort	1				
bouncing bet	1				1
buckthorn	1				1
autumn olive					ţ
honeysuckles	1				
bracken fern	1				1
red maple	1				1
penn sedge	1				1
Pop Note: it is better to use	oulation Increase	Decreas	e ~~~~	Same	⇒ Midwest

crew safe + acres achieved + spent fire budget & had flames + smoke & if spread the ash over acres = acreage "burned" = fire effects??

• what fire effects are achieved?

- quantity versus quality "measure of success"?
- "outcome-based investment strategy"?
- traditional-based organizational thinking or learningbased organizational thinking?

crew safe + acres achieved + spent fire budget & had flames + smoke & if spread the ash over acres = acreage "burned" = fire effects??

"Spring" season

- rare species-wildlife concernspermitting
- weather-prescriptions-air quality-smoke
- capacity staff doing something else
- social acceptance-public perception
- investment in time-labormoney-learning

"Fall" season

Mar Apr May June July Aug Sep Oct

Growing Season Fire Barriers - or Opportunities...

- 1. Lack of knowledge, or available information, on seasonal fire effects
- expectations for growing season burns based only on past dormant season burn experience (fuels, fire behavior, weather, prescriptions, mop-up, capacity)

photo credit Jack McGowan-Stinski

"- the burn plan did NOT restrict us to a specific type of ignition pattern, but allowed us to adapt ignition, rate of spread, and residence time to help adjust intensity & severity of this burn"

PHENOLOGY & PHYSIOLOGY

Woody – Coniferous & Herbaceous – Annuals & Perennials Deciduous EARLY – MID – LATE "GROWING SEASON" SPRING"

Duff & Soil Moisture

Fire Severity often increases

Dormancy Nov Dec Jan Feb Mar Apr May June July Aug

Leaf Out Flowering/Fruiting Senescence

Sep

()ct

using seasonality not just to open the burn window.... but to narrow it - deliberately using seasonality and phenology to define or refine prescriptions

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec *in the N. Midwest The timing of the fire determines which species will be positively or negatively impacted (native plants)

	April-May	June-Aug	Sept	Oct-Nov
Grasses and sedges				
Warm season	ſ	₽	¢	ᠿ
Cool season	➡		ſ	↓ ?
Forbs				
Early-flowering forbs	₽	ſ		₽?
Mid-flowering forbs	₽		ᠿ	1 ?
Late-flowering forbs	1	₽	ᠿ	1 ?
Legumes (Fabaceae)			ᠿ	ᠿ
Population Inc	rease 1	Decrease	~Same 🧲	⇒

Note: it is better to use yearly Phenology, but illustrated above in general terms with calendar dates for N. Midwest

seasonal fire effects – non-native & competitive plants

	March-April	May	June-Aug	Sept	Oct-Nov
knapweed	1	\iff	Ļ	I	1
sweet clovers		1			1
garlic mustard		Ļ			
St. Johnswort		\iff			
bouncing bet	1	1		\overleftrightarrow	1
buckthorn	1	\iff	Ļ		1
autumn olive		Ļ	Ļ	↓	\overleftrightarrow
honeysuckles	1	Ļ	Ļ		1
bracken fern	1		Ļ		1
red maple	1			1	1
penn sedge		\iff	Ļ	\overleftrightarrow	1
Ро	pulation Increase 1	Decreas	e 📕 ~	Same 🤇	⇒

Note: it is better to use yearly Phenology, but illustrated above in general terms with calendar dates for N. Midwest

Competing values = restoration **paralysis** because we will not 'accept' actions that harm animals

DO NOT TOUCH THE EDGES OF THIS SIGN

ALSO, THE BRIDGE IS OUT AHEAD

- fire-dependent wildlife species versus habitat -

what do you - as an animal - need to live ?

air, water, food

shelter (protection from predators & environment)

space to survive

photo credit Matt Cross

What might kill or injure me today??

predators?

fire?

Other abiotic /biotic disturbances?

> climate change?

timber

harvest?

mowing?

vehicles?

Without Fire....

1200

Growing Season Fire Barriers - or Opportunities...

- 1. Lack of knowledge, or available information, on seasonal fire effects
- expectations for growing season burns based only on past dormant season burn experience (fuels, fire behavior, weather, prescriptions, mop-up, capacity)

"You cannot burn that in the summer....

traditional-based thinking??

99

"We tried a summer burn and it did not 'work', so we are not going to try again...or what do we need to do differently?"

traditional-based thinking shifting to learningbased...learning from "mistakes"

"we will never do a summer burn because it will be too smoky...."

Average Number Days Weather met Prescription Parameters 1994-2012

April 1 - May 10	May 11 - June 15	June 16 - Aug 31	Sept 1 – 30
(40 total days)	(36 total days)	(77 total days)	(30 total days)
26	25	40	16

Example: 2011 priority proposed burns

ESTIMATED maximum totals across the entire season:

- 114 operational days
- 79 burn units

Time Period	April 1 –	May 11 –	June 16-	Sept 1- 30
	May 10	June 15	Aug 30	
Sites	11	10	7	3
Units	30	18	26	6
Operational	12 to 29	20 to 35	30 to 40	6 to 10
Days				
Estimated	0.4 to 0.97	1.11 to 1.94	1.15 to 1.54	1 to 1.67
operational	days			
days per unit				

Example: 2011 actual burns

ACTUAL maximum totals across the entire season:

- 106 operational days <u>8 less than estimated</u>
- 78 burn units <u>1 less than estimated</u>

Time Period	April 1 –	May 11 –	June 16-	Sept 1- 30
	May 10	June 15	Aug 30	
Sites	11	10	7	3
Units	27	18	25	8
Operational	22	25	44 (4 above	15
Days			estimate)	
Estimated	0.4 to 0.97	1.11 to 1.94	1.15 to 1.54	1 to 1.67
operational	days			
days per unit				
Actual days	0.81	1.39	1.76	1.8
per unit				

Example: 2011 completed burns

Time Period	April 1 – May 10	May 11 – June 15	June 16- Aug 30	Sept 1- 30
Sites	11	10	7	3
Units	27	18	25	8
Operational Days	22	25	44 (<u>4 above</u> <u>estimate</u>)	15
Actual days per unit	0.81	1.39	1.76	1.8

1+ operational days per burn to multiple operational & patrol days ("consumptive mop-up")

Implementation Costs, Fire Effects and Objectives

Which is more cost effective? 6 consecutive days following one growing season ignition, or 1 additional day after each spring burn but for 6 or more years?

Time Period	April 1 – May 10	May 11 – June 15	June 16- Aug 30	Sept 1- 30
Sites	11	10	7	3
Units	27	18	25	8
Operational Days	22	25	44 (4 above estimate)	15
Actual days per unit	0.81	1.39	1.76	1.8

1+ operational days per burn to multiple operational & patrol days ("consumptive mop-up") Reducing Risk: finding some "safer" times to burn with a pine component – burn after Spring Dip and when live fuel moisture highest...

fire across an expanded burn window & repeated burns

"building the new fire regime – & the new tradition - beyond your career....

Vary the way fires are conducted each time....

Vary the timing, intensity, severity and frequency....

Focus on long-term = learn from short term

reduce the state of high fire deficit

native plant diversity

rare species – plant & animal

non-native plant & competitive species

• achieving a shifting mosaic of habitat types

promote resilience