# VIIRS Day Land Cloud Fire RGB

# **Quick Guide**

## Why is the Day Land Cloud Fire RGB Important?

Also called "Natural Fire Color", this RGB combines three channels useful for fire monitoring. The 0.64 µm channel provides sensitivity to smoke, the 0.86 µm channel provides sensitivity to vegetation health and burn scars, and the 3.7 µm channel is sensitive to the hot spots from active fires. With VIIRS, we have the advantage that all of these channels are available at 375 m resolution, making it particularly useful for detecting small fires.

### Day Land Cloud Fire RGB Recipe

Fort McMurray Fire

Day Land Cloud Fire RGB from S-NPP VIIRS at 1942 UTC, 16 May 2016

| Color | Band<br>(µm) | Min-Max<br>Gamma | Physically Relates to         | Small contribution to pixel indicates     | Large Contribution to pixel indicates           |
|-------|--------------|------------------|-------------------------------|-------------------------------------------|-------------------------------------------------|
| Red   | 3.7          | 0 to 60 C<br>0.4 | Temperature, clouds           | Cold land surfaces,<br>ice/snow, clouds   | Warm land surfaces,<br>hot spots (active fires) |
| Green | 0.86         | 0 to 100%<br>1   | Vegetation, land vs.<br>water | Water, bare or rocky<br>ground, burn scar | Healthy vegetation,<br>snow/ice, clouds         |
| Blue  | 0.64         | 0 to 100%<br>1   | Smoke and clouds              | Water, dark ground, burn<br>scar          | Smoke, snow/ice,<br>clouds                      |

### Impact on Operations

### Primary Application

**Detect Active Fires:** The 375 m-resolution 3.7 µm channel on VIIRS is the best channel for detecting small fires.



**Monitor Vegetation:** the 0.86 µm channel has high sensitivity to vegetation health. Healthy vegetation will appear vivid green, while dried out grasses will appear more brown. Burn scars will appear reddish brown in an active fire and dark brown in an old fire.

Daytime Smoke: the 0.64  $\mu m$  channel provides sensitivity to smoke during the day, which will appear blue

Limitations

**Clouds Inhibit Fire detection:** Fires are only visible in clear sky areas



NASA

Deserts and Warm Backgrounds: Deserts and

and hot land surfaces may emit enough radiation at 3.7  $\mu$ m to appear red, similar to small/cool fires

**VIIRS Saturation and Fold-over :** The 3.7 µm channel on VIIRS saturates at a relatively low temperature (368 K). Very intense fires (500+ K) can cause "fold-over" which causes very low radiance to be reported. This causes some pixels in active fires to appear blue or cyan instead of red.





## VIIRS Day Land Cloud Fire RGB

### **Quick Guide**





### **RGB Color Guide**



#### Comparison to the Day Land Cloud RGB:

Unlike the Day Land Cloud ("Natural Color") RGB, left, the Day Land Cloud Fire ("Natural Fire Color") RGB, right, does not differentiate ice clouds and snow from low clouds. But, it is much more sensitive to hot spots from fires as seen at 2327Z on 6 June 2017.





#### **Resources**

NASA

SNPP - VIIRS Imagery and Visualization Team Blog http://rammb.cira.colostate.ed u/projects/npp/blog/index.php /tag/natural-fire-color-rgb/

RAMMB-Slider https://tinyurl.com/VIIRS-Natural-Fire-Color

Hyperlinks not available when viewing material in AIR Tool